• GMAT

    • TOEFL
    • IELTS
    • GRE
    • GMAT
    • 在线课堂
  • 首页
  • 练习
    我的练习
  • 模考
  • 题库
  • 提分课程
  • 备考资讯
  • 满分主讲
  • APP
  • 我的GMAT
    我的班课 我的1V1 练习记录 活动中心
登录

GMAT考满分·题库

搜索

收录题目9362道

搜索结果共225条

来源 题目内容
Manhattan If n is an integer, f(n) = f(n – 1) – n, and f(4) = 10. What is the value of f(6)?
191222 还原机经选题: 数论&代数 Known that -1 and 3 are the two roots of f (x) = ax ^ 2-bx + c, Is f(1)>0?
(1)f(0)=2
(2)f(-3)>f(-4)
190215 f(x)=a$$(x+h)^{2}$$+k.a=? 1:f(2)=2 2:f(-1)=-4,f(x) ≤ 4
Magoosh If F is a factor of 105, is F is a prime number?Statement #1: F is not divisible by 3Statement #2: F < 10
Magoosh Given$$f(x)= {{x}\over{x+1}}$$, for what value k does $$f(f(k))=\frac{2}{3}?$$
OG12 For all integers n, the function f is defined by $${f}({n})={a}^{n}$$, where a is a constant. What is the value of $$f (1)$$?(1)$$f (2) = 100$$(2)$$f (3) = -1,000$$
181215 f(x)=$$\frac{4x^{2}-1}{1-2x}$$,$$\frac{f(\sqrt{3})-f(\sqrt{2})}{\sqrt{3}-\sqrt{2}}$$=?
190603 It is given that f(x)=1-x, What is value of “ -f{ f(-(1-x))}”
The function f is defined by $${f}({x})=-\frac{1} x$$ for all nonzero numbers x. If $${f}({a})=-\frac1 2$$ and $${f}({a}{b})=\frac1 6$$, then b =
Manhattan What is the minimal value of function f(x)?(1) $$f(0) = 16$$(2) $$f(x) = (x – 4)^2$$
190407 f(m,n)=$$(-1)^{m}$$$$\frac{n}{2m+n}$$,g(n)=min{f(1,n),f(2,n),f(3,n)}.当n = 1,2,3时,g(n)的最大值是多少?
Magoosh Given f(x) = 3x – 5, for what value of x does 2*[f(x)] – 1 = f(3x – 6) ?
181215 f(x)=$$\frac{z}{x}$$.The definition domain of $$x_1$$,$$x_2$$ is the range of f(x). Is f$$(x_1)$$ less than f$$(x_2)$$ when $$x_1$$<$$x_2$$? 1:$$x_1$$>0 2:z > 0
191031 $$ f ( n ) = \frac { 4 x ^ { 2 } - 1 } { 1 - 2 x } , \frac { f ( \sqrt { 3 } ) - f ( \sqrt { 2 } ) } { \sqrt { 3 } - \sqrt { 2 } } = ? $$
191031 If $$f ( x ) = \frac { 4 x ^ { 2 } - 1 } { 1 - 2 x } $$,then $$\frac { f ( \sqrt { 3 } ) - f ( \sqrt { 2 } ) } { \sqrt { 3 } - \sqrt { 2 } }$$?
If f is the function defined by f(x) = 2x for $$x \geq 0 $$ and $${f}({x})={x}^{2}$$ for $$x < 0$$, what is the value of f(c) ?(1) $$\mid c\mid= 2$$(2) $$c < 0$$
190113 If n is odd, f(n)=$$2^{n}$$. If n is even, f(n)=$$3^{n}$$. What is the value of f(n) when n=$$2^{10}$$?
190415 f(x)=1-x+$$x^{2}$$-$$x^{3}$$+$$x^{4}$$-$$x^{5}$$.f(3)=?
181215 f(x)=-2$$(x-5)^{2}$$+3. What is the maximum value of f(x)?
191020 f(s)=$$\frac { 1 } { 4 } * s * t ^ { 2 }$$,and s= $$ 4^ { t }$$,so f(64)=?
  • ‹
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • ...
  • 11
  • 12
  • ›