• GMAT

    • TOEFL
    • IELTS
    • GRE
    • GMAT
    • 在线课堂
  • 首页
  • 练习
    我的练习
  • 模考
  • 题库
  • 提分课程
  • 备考资讯
  • 满分主讲
  • APP
  • 我的GMAT
    我的班课 我的1V1 练习记录 活动中心
登录

GMAT考满分·题库

搜索

收录题目9362道

搜索结果共4976条

来源 题目内容
190407 ABCD is a square whose center is O. M is the midpoint of BC. P is a point on AB. The sum of the length of AO, OM, and MC is equal to the sum of the length of AP and PC. AP/BP=?
If $${v}\neq{0}$$,is$$ \mid w\mid$$<$$\mid v \mid$$?(1)$$\frac{w}{v}<{1}$$(2)$$\frac{w^2}{v^2}<{1}$$
181215 r,s are non-zero integers. Is r/s a terminating decimal? 1: 1/r is a terminating decimal. 2: 1/s is a terminating decimal.
190215 [x] represents the minimum number larger than x. [x]-x=? 1:8x=8n+1. n is an integer. 2:8x=16m+1. m is an integer.
KMFDS If $${X}^{2}+{Y}^{2}={1}$$, is X+Y=1?(1) XY=0(2) Y=0
190215 What is the value of |x| - $$\frac{1}{|x-1|}$$= 1:x < 0 2:|x| = -x
If b(a+1)=b, then ab =
If $${25}({5}^{x})={1}$$ then x=
If$$ k \neq 0, k \neq±1$$, and $$({k^{3}xkxk^{4}})^{2}\over{k^{n}xk}$$=$$k^{14} $$, then n =
Magoosh If $$ k \neq 0$$ and $$k \neq±1$$, and $$({k^{3}*k*k^{4}})^{2}\over{k^{n}*k}$$=$$k^{14} $$, then n =
Magoosh If $$f(x) = x^{4} - 3x^{3}- 2x^{2} + 5x $$, then f(-1) =
Manhattan If $$3^{2n} = (\frac{1}{9})^{n+2}$$, what is the value of n?
OG18-数学分册 $${2\frac{3}{5}-1\frac{2}{3}}\over{\frac{2}{3}-\frac{3}{5}}$$=
OG19-数学分册 If $$x + y = 2$$ and $$x^{2} + y^{2} = 2$$, what is the value of xy?
OG19-数学分册 If a, b, and care constants, a> b > c, and $$x^{3} - x = (x - a)(x - b)(x - c)$$ for all numbers x, what is the value of b?
Ready4

If m, n and p are constants, m < n < p, and y^{3} - y = (y + m)(y + n)(y + p) for all numbers y, what is the value of n?

191031 $$ f ( n ) = \frac { 4 x ^ { 2 } - 1 } { 1 - 2 x } , \frac { f ( \sqrt { 3 } ) - f ( \sqrt { 2 } ) } { \sqrt { 3 } - \sqrt { 2 } } = ? $$
191031 If $$f ( x ) = \frac { 4 x ^ { 2 } - 1 } { 1 - 2 x } $$,then $$\frac { f ( \sqrt { 3 } ) - f ( \sqrt { 2 } ) } { \sqrt { 3 } - \sqrt { 2 } }$$?
191020 Two straight lines intersect at (1, -1), and given that the product of the slopes of two lines is -1. One of the lines intersects the x axis at (3,0). What is the intercept of the other line with the Y-axis?
OG12 OG15 if $$\frac{2}{{1}+\frac{2}{y}}=1$$,then y=
  • ‹
  • 1
  • 2
  • ...
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • ...
  • 248
  • 249
  • ›